Problem 1.31

Calculate the volume integral of the function $T=z^{2}$ over the tetrahedron with corners at $(0,0,0)$, $(1,0,0),(0,1,0)$, and $(0,0,1)$.

Solution

Begin by drawing the tetrahedron formed by these four points. Note that the equation of the plane going through $(1,0,0),(0,1,0)$, and $(0,0,1)$ is $x+y+z=1$.

The bounding surfaces of the tetrahedron in z are $z=0$ and $z=1-x-y$, the bounding curves of this tetrahedron's projection onto the $x y$-plane in y are $y=0$ and $y=1-x$, and the bounding limits of this projection's projection onto the x-axis are $x=0$ and $x=1$. Therefore,

$$
\begin{aligned}
\iiint_{\text {Prahedron }} z^{2} d V & =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} z^{2} d z d y d x \\
& =\left.\int_{0}^{1} \int_{0}^{1-x} \frac{z^{3}}{3}\right|_{0} ^{1-x-y} d y d x \\
& =\frac{1}{3} \int_{0}^{1} \int_{0}^{1-x}(1-x-y)^{3} d y d x \\
& =\frac{1}{3} \int_{0}^{1} \int_{1-x}^{0}(u)^{3}(-d u) d x \\
& =\frac{1}{3} \int_{0}^{1} \int_{0}^{1-x} u^{3} d u d x \\
& =\left.\frac{1}{3} \int_{0}^{1} \frac{u^{4}}{4}\right|_{0} ^{1-x} d x \\
& =\frac{1}{12} \int_{0}^{1}(1-x)^{4} d x \\
& =\frac{1}{12} \int_{1}^{0}(v)^{4}(-d v)=\frac{1}{12} \int_{0}^{1} v^{4} d v=\frac{1}{12}\left(\frac{1}{5}\right)=\frac{1}{60} .
\end{aligned}
$$

